UCSC Econ11B - Maths Methods for Economists Pt. II - Luba Petersen

 Math Methods for Economists Pt. II 

       [PDF Syllabus
   Luba Petersen
        Contact & Website
        Course Website
Office: Eng 2 
E2 409

    Class Time and Location
        Baskin Auditorium - 101
        Mon, Wed & Fri 9:00-11:30am

    Office Hours
        Luba: Thurs 4:00-6:00pm
        Orcan (TA): 
Thursday 11-1:00pm Engr2, 403F
        Curtis (TA): M, W & F after class
Econ 11B is the continuation of ECON/AMS 11A. The course covers integral calculus and multivariate calculus, including indefinite and definite integrals, partial derivatives, total derivatives, optimization in several variables and Lagrange multipliers. The course deals with applications to economics in greater details including elasticity, Taylor approximation, and the envelope theorem. The foundations and applications included in the class aim to prepare students for more advanced courses in mathematics, statistics, and economics.

Lecture 1  July 26
Class intro 
[PDF Syllabus]. Econ 11A & differentiation review. Multivariable Calculus (Chapter 17). Partial Derivatives. Maple Syrup example. Complements and Substitutes. 

Lecture 2  July 28


Lecture 3  July 30

     Problem Set 1 - Due August 2nd
     thirty small questions, one long word problem 
     Plus some added resources for the quiz

Lecture 4  August 2
Maxima and Minima for Functions of of Two Variables. Finding the relative max and relative min - the critical point - Unconstrained Optimization. Envelope Theorem introduced. 

Lecture 5  August 4
Lagrange Multipliers and Constrained Optimization. An example with the maximization of output given a budget constraint. Envelope Theorem reintroduced and explained. Simple Example of the Envelope Theorem. Hotelling's Lemma. 

     Problem Set 2 - Due August 9th
     a few small questions, two long word problem

Lecture 8  August 9

Lecture 9  August 11

Lecture 10  August 13

     Quiz 2  August 13
     Step-by-Step Answer Key & Grading Key [PDF]

Problem Set 3 - Due August 16

Lecture 11  August 16

Lecture 12  August 18

Lecture 13  August 20

Problem Set 4 - Due August 23

Lecture 14  August 23

Lecture 15  August 25

Lecture 16  August 27